
Parallel I/O with HDF5 and
Performance Tuning Techniques
June 26, 2020

M. Scot Breitenfeld
Chen Wang

Elena Pourmal

2

Outline

• Overview of parallel HDF5
• General best practices which effect parallel performance
• Best methods for HDF5 parallel I/O
• Using Parallel I/O instrumentation for tuning

3

Resources
• HDF5 home page: http://hdfgroup.org/HDF5/
• HDF5 Jira: https://jira.hdfgroup.org
• Documentation: https://portal.hdfgroup.org/display/HDF5/HDF5

• HDF5 repo: https://bitbucket.hdfgroup.org/projects/HDFFV/repos/hdf5/
• We are moving to Github! Stay tuned for announcement

• Latest releases: https://portal.hdfgroup.org/display/support/Downloads
• HDF5 1.8.21
• HDF5 1.10.6
• HDF5 1.12.0

4

HDF5 Version for parallel HDF5
• CGNS scaling for different versions of HDF5 (Summit, ORNL).

Parallel HDF5 Overview

6

Parallel HDF5 Overview

• In this section we will remind you about basics of parallel HDF5
• If you are new to parallel HDF5, see:

• Online tutorials https://portal.hdfgroup.org/display/HDF5/Introduction+to+Parallel+HDF5
• In-person tutorials

• Super Computing Conference (MPI IO)
• ECP annual meetings
• National Laboratories (Argonne Training Program on Extreme-Scale Computing (ATPESC))

7

• Take advantage of high-performance parallel I/O while reducing
complexity
• Use a well-defined high-level I/O layer instead of POSIX or MPI-IO
• Use only a single or a few shared files

• “Friends don’t let friends use file-per-process!”

• Maintained code base, performance and data portability
• Rely on HDF5 to optimize for underlying storage system

Why Parallel HDF5?

8

Benefit of Parallel I/O – Strong Scaling Example

CGNS – SUMMIT, ORNL

9

PHDF5 implementation layers

HDF5 LIBRARY

MPI I/O LIBRARY

HDF5 FILE ON PARALLEL FILE SYSTEM

DISK ARCHITECTURE AND LAYOUT OF DATA ON DISK

COMPUTE NODE COMPUTE NODE COMPUTE NODE

APPLICATION

INTERCONNECT NETWORK + I/O SERVERS

10

Parallel HDF5 (PHDF5) vs. Serial HDF5

• PHDF5 allows multiple MPI processes in an MPI application
to perform I/O to a single HDF5 file

• Uses a standard parallel I/O interface (MPI-IO)
• Portable to different platforms
• PHDF5 files ARE HDF5 files conforming to the HDF5 file

format specification
• The PHDF5 API consists of:

• The standard HDF5 API
• A few extra knobs and calls
• A parallel “etiquette”

11

• PHDF5 opens a shared file with an MPI communicator
• Returns a file ID (as usual)
• All future access to the file via that file ID

• Different files can be opened via different communicators
• All processes must participate in collective PHDF5 APIs
• All HDF5 APIs that modify the HDF5 namespace and structural metadata are

collective!
• File ops., group structure, dataset dimensions, object life-cycle, etc.

• Raw data operations can either be collective or independent
• For collective, all processes must participate, but they don’t need to read/write data.

Parallel HDF5 Etiquette

https://support.hdfgroup.org/HDF5/doc/RM/CollectiveCalls.html

12

Starting with a simple serial HDF5 program:

file_id = H5Fcreate(FNAME, …, H5P_DEFAULT);
space_id = H5Screate_simple(…);
dset_id = H5Dcreate(file_id, DNAME, H5T_NATIVE_INT, space_id, …);

status = H5Dwrite(dset_id, H5T_NATIVE_INT, …, H5P_DEFAULT);

Example of a PHDF5 C Program

13

A parallel HDF5 program has a few extra calls:
MPI_Init(&argc, &argv);
…
fapl_id = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_fapl_mpio(fapl_id, comm, info);
file_id = H5Fcreate(FNAME, …, fapl_id);
space_id = H5Screate_simple(…);
dset_id = H5Dcreate(file_id, DNAME, H5T_NATIVE_INT, space_id, …);
xf_id = H5Pcreate(H5P_DATASET_XFER);
H5Pset_dxpl_mpio(xf_id, H5FD_MPIO_COLLECTIVE);
status = H5Dwrite(dset_id, H5T_NATIVE_INT, …, xf_id);
…
MPI_Finalize();

Example of a PHDF5 C Program

14

General HDF5 Programming Parallel Model for raw
data I/O
• Each process defines selections in memory and in file (aka HDF5 hyperslabs)

using H5Sselect_hyperslab
• The hyperslab parameters define the portion of the dataset to write to
- Contiguous hyperslab
- Regularly spaced data (column or row)
- Pattern
- Blocks

• Each process executes a write/read call using selections, which can be either
collective or independent

15

Collective vs. Independent Operations
• MPI Collective Operations:

• All processes of the communicator must participate, in the right order.
E.g.,

Process1 Process2
call A(); call B(); call A(); call B(); …CORRECT

call A(); call B(); call B(); call A(); …WRONG

• Collective operations are not necessarily synchronous, nor must
they require communication
• It could be that only internal state for the communicator changes

• Collective I/O attempts to combine multiple smaller independent I/O
ops into fewer larger ops; neither mode is preferable a priori

16

Object Creation (Collective vs. Single Process)

17

CAUTION: Object Creation
(Collective vs. Single Process)

• In sequential mode, HDF5 allocates chunks incrementally, i.e., when data is
written to a chunk for the first time.
• Chunk is also initialized with the default or user-provided fill value.

• In the parallel case, chunks are always allocated when the dataset is created
(not incrementally).
• The more ranks there are, the more chunks need to be allocated and

initialized/written, which manifests itself as a slowdown

18

CAUTION: Object Creation
(SEISM-IO, Blue Waters—NCSA)

Set HDF5 to never fill chunks (H5Pset_fill_time with H5D_FILL_TIME_NEVER)

19

Parallel Compression (HDF5 1.10.2 and later)

General HDF5 Best Practices Effecting Parallel
Performance

21

Memory considerations

• Open Objects
• Open objects use up memory. The amount of memory used may be

substantial when many objects are left open. Application should:
• Delay opening of files and datasets as close to their actual use as is feasible.
• Close files and datasets as soon as their use is completed.
• If opening a dataspace in a loop, be sure to close the dataspace with each iteration, as

this can cause a large temporary "memory leak".

• There are APIs to determine if objects are left open.
H5Fget_obj_count will get the number of open objects in the file,
and H5Fget_obj_ids will return a list of the open object identifiers.

22

HDF5 Dataset I/O

• Issue large I/O requests
• At least as large as file system block size

• Avoid datatype conversion
• Use the same data type in the file as in memory

• Avoid dataspace conversion
• One dimensional buffer in memory to two-dimensional array in the file

Can break collective operations; check what mode was used
H5Pget_mpio_actual_io_mode, and why
H5Pget_mpio_no_collective_cause

23

HDF5 Dataset – Storage Type

• Use contiguous storage if no data will be added and compression is not used
• Data will no be cached by HDF5

• Use compact storage when working with small data (<64K)
• Data becomes part of HDF5 internal metadata and is cached (metadata cache)

• Avoid data duplication to reduce file sizes
• Use links to point to datasets stored in the same or external HDF5 file
• Use VDS to point to data stored in other HDF5 datasets

24

HDF5 Dataset – Chunked Storage
• Chunking is required when using extendibility and/or compression and other filters
• I/O is always performed on a whole chunk
• Understand how chunking cache works

https://portal.hdfgroup.org/display/HDF5/Chunking+in+HDF5 and consider
• Do you access the same chunk often?
• What is the best chunk size (especially when using compression)?

HDF5 Parallel Performance

26

Performance Tuning is a Multi-layer Problem

Storage Hardware

Parallel File System
(Lustre – stripe factor and stripe size)

MPI-IO
(Number of collective buffer nodes, collective buffer size, …)

HDF5
(cache chunk size, independent/collective …)

Application
(Semantic organization, standards compliance …) Our focus today is on

HDF5 and PFS

27

Parallel File Systems – Lustre, GPFS, etc.

• Scalable, POSIX-compliant file systems designed for
large, distributed-memory systems

• Uses a client-server model with separate servers for file
metadata and file content

28

Effects of Software/Hardware Changes

• Poor/Improved performance can be a result of FS changes
• Single shared file using MPI-IO performance degradation [Byna, NERSC].

29

Effects of influencing object’s in the file layout

• H5Pset_alignment – controls alignment of file objects on addresses.

VPIC, Summit, ORNL

30

How to pass hints to MPI from HDF5

• To set hints for MPI using HDF5, see: H5Pset_fapl_mpio
• Use the 'info' parameter to pass these kinds of low-level MPI-IO tuning tweaks.
• C Example – Controls the number of aggregators on GPFS:
MPI_Info info;
MPI_Info_create(&info); /* MPI hints: the key and value are strings */
MPI_Info_set(info, "bg_nodes_pset", "1");
H5Pset_fapl_mpio(plist_id, MPI_COMM_WORLD, info);
/* Pass plist_id to H5Fopen or H5Fcreate */
file_id = H5Fcreate(H5FILE_NAME, H5F_ACC_TRUNC, H5P_DEFAULT, plist_id);

Use Case CGNS

Performance tuning

32

• CGNS = Computational Fluid Dynamics (CFD) General Notation System
• An effort to standardize CFD input and output data including:

• Grid (both structured and unstructured), flow solution
• Connectivity, boundary conditions, auxiliary information.

• Two parts:
• A standard format for recording the data
• Software that reads, writes, and modifies data in that format.

• An American Institute of Aeronautics and Astronautics Recommended
Practice

33

Performance issue: Slow opening of an HDF5
File …

• Opening an existing file
• CGNS reads the entire HDF5 file structure, loading a lot of (HDF5) metadata
• Reads occur independently on ALL ranks competing for the same metadata

”Read Storm”

BEFORE COLLECTIVE
METADATA

COLLECTIVE
METADATA

IMPRACTICAL

34

Metadata Read Storm Problem (I)

• All metadata “write” operations are required to be collective:

• Metadata read operations are not required to be collective:

if(0 == rank)
H5Dcreate(“dataset1”);

else if(1 == rank)
H5Dcreate(“dataset2”);

/* All ranks have to call */
H5Dcreate(“dataset1”);
H5Dcreate(“dataset2”);

if(0 == rank)
H5Dopen(“dataset1”);

else if(1 == rank)
H5Dopen(“dataset2”);

/* All ranks have to call */
H5Dopen(“dataset1”);
H5Dopen(“dataset2”);

35

HDF5 Metadata Read Storm Problem (II)
• HDF5 metadata read operations are treated by the library as

independent read operations.
• Consider a very large MPI job size where all processes want

to open a dataset that already exists in the file.
• All processes

• Call H5Dopen(“/G1/G2/D1”);
• Read the same metadata to get to the dataset and the metadata of

the dataset itself
• IF metadata not in cache, THEN read it from disk.

• Might issue read requests to the file system for the same small
metadata.

Read Storm

36

Avoiding a Read Storm

• Hint that metadata access is done collectively
• H5Pset_coll_metadata_write, H5Pset_all_coll_metadata_ops

• A property on an access property list
• If set on the file access property list, then all metadata read operations

will be required to be collective
• Can be set on individual object property list
• If set, MPI rank 0 will issue the read for a metadata entry to the file

system and broadcast to all other ranks

37

Improve the performance of reading/writing
H5S_all selected datasets

(1) New in HDF5 1.10.5
• If:

• All the processes are
reading/writing the same data

• And the dataset is less than 2GB
• Then

• The lowest process id in the
communicator will read and
broadcast the data or will write the
data.

(2) Use of compact storage, or
• For compact storage, this same

algorithm gets used.

38

SCALING OPTIMIZATIONS

Ti
m

e
(s

ec
.)

Greg Sjaardema, Sandia National Labs

ORIGINAL

MPI_Bcast

READ-PROC0-AND-BCAST
WITHIN APPLICATION

COMPACT STORAGE

FILE-PER-PROCESS

Diagnostics and Instrumentation Tools

40

I/O monitoring and profiling tools
• Two kinds of tools:

• I/O benchmarks for measuring a system’s I/O capabilities
• I/O profilers for characterizing applications’ I/O behavior
• Profilers have to compromise between

• A lot of detail è large trace files and overhead
• Aggregation è loss of detail, but low overhead

• Examples of I/O benchmarks:
• h5perf (in the HDF5 source code distro and binaries)
• IOR https://github.com/hpc/ior

• Examples of profilers
• Darshan https://www.mcs.anl.gov/research/projects/darshan/
• Recorder https://github.com/uiuc-hpc/Recorder
• TAU built with HDF5

https://github.com/UO-OACISS/tau2/wiki/Configuring-TAU- to-measure-IO-libraries

41

“Poor Man’s Debugging”

• Build a version of PHDF5 with
• ./configure --enable-build-mode=debug --enable-parallel …

• setenv H5FD_mpio_Debug “rw”

• This allows the tracing of MPIO I/O calls in the HDF5 library such as
MPI_File_read_xx and MPI_File_write_xx

• You’ll get something like this…

42

“Poor Man’s Debugging”(cont’d)
Example - Chunked by Column

% setenv H5FD_mpio_Debug ’rw’
% mpirun -np 4 ./a.out 1000 # Indep., Chunked by column.
in H5FD_mpio_write mpi_off=0 size_i=96
in H5FD_mpio_write mpi_off=0 size_i=96
in H5FD_mpio_write mpi_off=0 size_i=96
in H5FD_mpio_write mpi_off=0 size_i=96
in H5FD_mpio_write mpi_off=3688 size_i=8000
in H5FD_mpio_write mpi_off=11688 size_i=8000
in H5FD_mpio_write mpi_off=27688 size_i=8000
in H5FD_mpio_write mpi_off=19688 size_i=8000
in H5FD_mpio_write mpi_off=96 size_i=40
in H5FD_mpio_write mpi_off=136 size_i=544
in H5FD_mpio_write mpi_off=680 size_i=120
in H5FD_mpio_write mpi_off=800 size_i=272
…

HDF5 metadata

Dataset elements

HDF5 metadata

43

“Poor Man’s Debugging” (cont’d)
Debugging Collective Operations

setenv H5_COLL_API_SANITY_CHECK 1

• HDF5 library will perform an MPI_Barrier() call inside each metadata operation
that modifies the HDF5 namespace.

• Helps to find which rank is hanging in the MPI barrier

Use Case

Tuning PSDNS with Darshan

45

Darshan (ECP DataLib team)

• Design goals:
• Transparent integration with user environment
• Negligible impact on application performance

• Provides aggregate figures for:
• Operation counts (POSIX, MPI-IO, HDF5, PnetCDF)
• Datatypes and hint usage
• Access patterns: alignments, sequentially, access size
• Cumulative I/O time, intervals of I/O activity

• An excellent starting point

New feature in Darshan 3.2.0+

46

Darshan Use-Case (Blue Waters, NCSA)

• PSDNS code solves the incompressible Navier-Stokes equations in a periodic
domain using pseudo-spectral methods.

• Uses custom sub-filing by collapsing the 3D in-memory layout into a 2D
arrangement of HDF5 files

• Uses virtual dataset which combines the datasets distributed over several
HDF5 files into a single logical dataset

Slow read times.

Ran experiments on 32,768 processes with Darshan 3.1.3 to create an I/O profile.

47

Darshan Use-Case (Blue Waters, NCSA)
…
total_POSIX_SIZE_READ_0_100: 196608
total_POSIX_SIZE_READ_100_1K: 393216
total_POSIX_SIZE_READ_1K_10K: 617472
total_POSIX_SIZE_READ_10K_100K: 32768
total_POSIX_SIZE_READ_100K_1M: 2097152
total_POSIX_SIZE_READ_1M_4M: 0
total_POSIX_SIZE_READ_4M_10M: 0
total_POSIX_SIZE_READ_10M_100M: 0
total_POSIX_SIZE_READ_100M_1G: 0
total_POSIX_SIZE_READ_1G_PLUS: 0
…

Large numbers of reads of only small amounts of data.

Multiple MPI ranks independently read data from a small restart file which
contains a virtual dataset.

48

Darshan Use-Case (Blue Waters, NCSA)
“Broadcast” the restart file:
1. Rank 0: read the restart file as a byte stream into a memory buffer.
2. Rank 0: broadcasts the buffer.
3. All MPI ranks open the buffer as an HDF5 file image, and proceed as if they were

performing reads against an HDF5 file stored in a file system.
Eliminates the “read storm”,
….
total_POSIX_SIZE_READ_0_100: 6
total_POSIX_SIZE_READ_100_1K: 0
total_POSIX_SIZE_READ_1K_10K: 0
total_POSIX_SIZE_READ_10K_100K: 2
total_POSIX_SIZE_READ_100K_1M: 0
total_POSIX_SIZE_READ_1M_4M: 0
total_POSIX_SIZE_READ_4M_10M: 0
total_POSIX_SIZE_READ_10M_100M: 0
total_POSIX_SIZE_READ_100M_1G: 32768
total_POSIX_SIZE_READ_1G_PLUS: 0
…

Use Case

Tuning HACC (Hardware/Hybrid Accelerated Cosmology Code)
with Recorder

50

Recorder

• Multi-level I/O tracing library that captures function calls from HDF5, MPI and
POSIX.

• It keeps every function and its parameters. Useful to exam access patterns.
• Built-in visualizations for access patterns, function counters, I/O sizes, etc.
• Also reports I/O conflicts such as write-after-write, write-after-read, etc. Useful

for consistency semantics check (File systems with weaker consistency
semantics).

Wang, Chen, Jinghan Sun, Marc Snir, Kathryn Mohror, and Elsa Gonsiorowski. "Recorder 2.0: Efficient Parallel I/O
Tracing and Analysis." In IEEE International Workshop on High-Performance Storage (HPS), 2020.
https://github.com/uiuc-hpc/Recorder

51

Write Pattern Effects – Data location
in the file

Variable 1 (v1)
Pattern 1 – HDF5 pattern

Pattern 2 – MPI-IO pattern (or HDF5 compound datatype)

P0 P1 P2 P0 P1 P2

P0 P0

P0 P1 P2

Variable 2 (v2) Variable N (vN)
…

P0 P1 P1 P1 P2 P2 P2
… … …

Variables are contiguously stored in the file

Variables are interleaved in the file

v1 v2 vN v1 v2 vN v1 v2 vN

52

HACC-IO: MPI vs HDF5, why HDF5 is slow?

HDF5 with individual datasetMPI-IO Access Pattern

Example of access patterns with 8 ranks writing 9GB.

53 HDF5 with allocate multiHDF5 with individual dataset HDF5 with compound datatype

HACC-IO: HDF5 access patterns

54

• Will Collective I/O make the access pattern (on the left) of individual dataset better?
– Problem size: 8GB per variable, 72GB in total
– Lustre config: Stripe count 32, Stripe Size 512M
– Each rank writes 9 variables
– The size of each write is 8GB/1024 Processes = 8MB

• ROMIO:
– romio_cb_read/write = automatic
– "When set to automatic, ROMIO will use heuristics to determine when to enable the optimization."

HACC-IO: access patterns of HDF5 with
collective I/O

Writes are aggregated by
32 nodes whereas reads

remain the same

55

Interleaved is not always better, and neither
is collective IO
• Write bandwidth with different stripe size.
• Individual dataset is better when using large stripe sizes.

W
rit

e
Ba

nd
w

id
th

(M

B/
s)

56

• When the request size is big, the collective communication overhead increases and the
benefits from collective I/O becomes limited.

• Request size is 8MB in our case.
• Collective writes are indeed much faster: 83 seconds vs 1539 seconds in independent mode.
• However, the cost for communication is too high

Interleaved is not always better, and neither
is collective IO

Accumulated time spent on each function

83 seconds

Over 8000 seconds
overhead.

1539 seconds

Collective Independent

57

Interleaved is not always better, and neither
is collective IO
• Write bandwidth with different stripe size.
• Individual dataset is better when using large stripe sizes.

W
rit

e
Ba

nd
w

id
th

(M

B/
s)

58

HACC-IO: MPI vs HDF5
• Same access pattern, but why MPI is faster?

• HDF5 writes 2048 bytes
metadata at the beginning
of the file.

• This causes the alignment
issue for the data writes.

MPI_File_write_at is
slower in HDF5?

MPI only HDF5

59

Need help

• HDF Knowledge base
https://portal.hdfgroup.org/display/knowledge/Parallel+HDF5

• HDF-FORUM https://forum.hdfgroup.org/
• HDF Helpdesk help@hdfgroup.org

60

Acknowledgement

This material is based upon work supported by the U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences under Award Number DE-
AC05-00OR22725.
Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

THANK YOU!
Questions & Comments?

